随着全球推出第五代(5G)网络,有必要超越5G,并设想6G网络。预计6G网络将具有空间空气地集成网络,高级网络虚拟化和无处不在的智能。本文介绍了一个用于6G网络的人工智能(AI) - 网络切片架构,以实现AI和网络切片的协同作用,从而促进智能网络管理和支持新兴AI服务。首先在网络切片生命周期中讨论基于AI的解决方案,以智能地管理网络切片,即用于切片的AI。然后,研究了网络切片解决方案,通过构建AI实例和执行高效的资源管理来支持Emerging AI服务,即AI的切片。最后,提出了一个案例研究,然后讨论了6G网络中的AI-Native Network SliCing必不可少的开放研究问题。
translated by 谷歌翻译
Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents to generate answers. Retrievers and readers are usually modeled separately, which necessitates a cumbersome implementation and is hard to train and adapt in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs Retrieval as Attention (ReAtt), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that a single model trained end-to-end can achieve both competitive retrieval and QA performance, matching or slightly outperforming state-of-the-art separately trained retrievers and readers. Moreover, end-to-end adaptation significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable solution for knowledge-intensive tasks. Code and models are available at https://github.com/jzbjyb/ReAtt.
translated by 谷歌翻译
This paper describes the submission of the RoyalFlush neural machine translation system for the WMT 2022 translation efficiency task. Unlike the commonly used autoregressive translation system, we adopted a two-stage translation paradigm called Hybrid Regression Translation (HRT) to combine the advantages of autoregressive and non-autoregressive translation. Specifically, HRT first autoregressively generates a discontinuous sequence (e.g., make a prediction every $k$ tokens, $k>1$) and then fills in all previously skipped tokens at once in a non-autoregressive manner. Thus, we can easily trade off the translation quality and speed by adjusting $k$. In addition, by integrating other modeling techniques (e.g., sequence-level knowledge distillation and deep-encoder-shallow-decoder layer allocation strategy) and a mass of engineering efforts, HRT improves 80\% inference speed and achieves equivalent translation performance with the same-capacity AT counterpart. Our fastest system reaches 6k+ words/second on the GPU latency setting, estimated to be about 3.1x faster than the last year's winner.
translated by 谷歌翻译
Arbitrary style transfer (AST) transfers arbitrary artistic styles onto content images. Despite the recent rapid progress, existing AST methods are either incapable or too slow to run at ultra-resolutions (e.g., 4K) with limited resources, which heavily hinders their further applications. In this paper, we tackle this dilemma by learning a straightforward and lightweight model, dubbed MicroAST. The key insight is to completely abandon the use of cumbersome pre-trained Deep Convolutional Neural Networks (e.g., VGG) at inference. Instead, we design two micro encoders (content and style encoders) and one micro decoder for style transfer. The content encoder aims at extracting the main structure of the content image. The style encoder, coupled with a modulator, encodes the style image into learnable dual-modulation signals that modulate both intermediate features and convolutional filters of the decoder, thus injecting more sophisticated and flexible style signals to guide the stylizations. In addition, to boost the ability of the style encoder to extract more distinct and representative style signals, we also introduce a new style signal contrastive loss in our model. Compared to the state of the art, our MicroAST not only produces visually superior results but also is 5-73 times smaller and 6-18 times faster, for the first time enabling super-fast (about 0.5 seconds) AST at 4K ultra-resolutions. Code is available at https://github.com/EndyWon/MicroAST.
translated by 谷歌翻译
Among current anchor-based detectors, a positive anchor box will be intuitively assigned to the object that overlaps it the most. The assigned label to each anchor will directly determine the optimization direction of the corresponding prediction box, including the direction of box regression and category prediction. In our practice of crowded object detection, however, the results show that a positive anchor does not always regress toward the object that overlaps it the most when multiple objects overlap. We name it anchor drift. The anchor drift reflects that the anchor-object matching relation, which is determined by the degree of overlap between anchors and objects, is not always optimal. Conflicts between the fixed matching relation and learned experience in the past training process may cause ambiguous predictions and thus raise the false-positive rate. In this paper, a simple but efficient adaptive two-stage anchor assignment (TSAA) method is proposed. It utilizes the final prediction boxes rather than the fixed anchors to calculate the overlap degree with objects to determine which object to regress for each anchor. The participation of the prediction box makes the anchor-object assignment mechanism adaptive. Extensive experiments are conducted on three classic detectors RetinaNet, Faster-RCNN and YOLOv3 on CrowdHuman and COCO to evaluate the effectiveness of TSAA. The results show that TSAA can significantly improve the detectors' performance without additional computational costs or network structure changes.
translated by 谷歌翻译
A key assumption in most existing works on FL algorithms' convergence analysis is that the noise in stochastic first-order information has a finite variance. Although this assumption covers all light-tailed (i.e., sub-exponential) and some heavy-tailed noise distributions (e.g., log-normal, Weibull, and some Pareto distributions), it fails for many fat-tailed noise distributions (i.e., ``heavier-tailed'' with potentially infinite variance) that have been empirically observed in the FL literature. To date, it remains unclear whether one can design convergent algorithms for FL systems that experience fat-tailed noise. This motivates us to fill this gap in this paper by proposing an algorithmic framework called FAT-Clipping (\ul{f}ederated \ul{a}veraging with \ul{t}wo-sided learning rates and \ul{clipping}), which contains two variants: FAT-Clipping per-round (FAT-Clipping-PR) and FAT-Clipping per-iteration (FAT-Clipping-PI). Specifically, for the largest $\alpha \in (1,2]$ such that the fat-tailed noise in FL still has a bounded $\alpha$-moment, we show that both variants achieve $\mathcal{O}((mT)^{\frac{2-\alpha}{\alpha}})$ and $\mathcal{O}((mT)^{\frac{1-\alpha}{3\alpha-2}})$ convergence rates in the strongly-convex and general non-convex settings, respectively, where $m$ and $T$ are the numbers of clients and communication rounds. Moreover, at the expense of more clipping operations compared to FAT-Clipping-PR, FAT-Clipping-PI further enjoys a linear speedup effect with respect to the number of local updates at each client and being lower-bound-matching (i.e., order-optimal). Collectively, our results advance the understanding of designing efficient algorithms for FL systems that exhibit fat-tailed first-order oracle information.
translated by 谷歌翻译
To lower the communication complexity of federated min-max learning, a natural approach is to utilize the idea of infrequent communications (through multiple local updates) same as in conventional federated learning. However, due to the more complicated inter-outer problem structure in federated min-max learning, theoretical understandings of communication complexity for federated min-max learning with infrequent communications remain very limited in the literature. This is particularly true for settings with non-i.i.d. datasets and partial client participation. To address this challenge, in this paper, we propose a new algorithmic framework called stochastic sampling averaging gradient descent ascent (SAGDA), which i) assembles stochastic gradient estimators from randomly sampled clients as control variates and ii) leverages two learning rates on both server and client sides. We show that SAGDA achieves a linear speedup in terms of both the number of clients and local update steps, which yields an $\mathcal{O}(\epsilon^{-2})$ communication complexity that is orders of magnitude lower than the state of the art. Interestingly, by noting that the standard federated stochastic gradient descent ascent (FSGDA) is in fact a control-variate-free special version of SAGDA, we immediately arrive at an $\mathcal{O}(\epsilon^{-2})$ communication complexity result for FSGDA. Therefore, through the lens of SAGDA, we also advance the current understanding on communication complexity of the standard FSGDA method for federated min-max learning.
translated by 谷歌翻译
磁共振成像(MRI)图像中的小病变对于多种疾病的临床诊断至关重要。但是,MRI质量很容易被各种噪声降解,这可以极大地影响小病变的诊断准确性。尽管已经提出了一些用于降级MR图像的方法,但缺乏提高特定于任务的降级方法来提高小病变的诊断信心。在这项工作中,我们建议通过体素杂种残留MLP-CNN模型来降低具有小病变的三维(3D)MR图像。我们结合了基本的深度学习体系结构MLP和CNN,以获得适当的固有偏差,以通过添加残差连接来利用远距离信息,以使图像降低并整合MLP和CNN中的每个输出层。我们在720 T2-Flair脑图像上评估了所提出的方法,其在不同的噪声水平下具有较小的病变。结果表明,与最先进的方法相比,在定量和视觉评估中,我们的方法在测试数据集上具有优势。此外,两名经验丰富的放射科医生同意,在中等和高噪声水平下,我们的方法在恢复小病变和整体图像质量方面优于其他方法。我们的方法的实现可在https://github.com/laowangbobo/Residual_MLP_CNN_MIXER上获得。
translated by 谷歌翻译
近年来,基于注意力的场景文本识别方法非常受欢迎,并吸引了许多研究人员的兴趣。基于注意力的方法可以将注意力集中在解码过程中的小区域甚至单点上,其中注意矩阵几乎是一个旋转分布。此外,在推断过程中,所有注意力矩阵都将加权整个特征地图,从而导致巨大的冗余计算。在本文中,我们提出了一个用于场景文本识别的有效无注意的单点解码网络(称为SPDN),该网络可以取代传统的基于注意力的解码网络。具体而言,我们建议单点采样模块(SPSM)有效地在特征映射上为解码一个字符的一个关键点采样。这样,我们的方法不仅可以精确地找到每个字符的关键点,还可以删除冗余计算。基于SPSM,我们设计了一个高效且新颖的单点解码网络,以替代基于注意力的解码网络。对公开基准测试的广泛实验证明,我们的SPDN可以大大提高解码效率而不牺牲性能。
translated by 谷歌翻译
由于其在数据隐私保护,有效的沟通和并行数据处理方面的好处,联邦学习(FL)近年来引起了人们的兴趣。同样,采用适当的算法设计,可以实现fl中收敛效应的理想线性加速。但是,FL上的大多数现有作品仅限于I.I.D.的系统。数据和集中参数服务器以及与异质数据集分散的FL上的结果仍然有限。此外,在完全分散的FL下,与数据异质性在完全分散的FL下,可以实现收敛的线性加速仍然是一个悬而未决的问题。在本文中,我们通过提出一种称为Net-Fleet的新算法,以解决具有数据异质性的完全分散的FL系统,以解决这些挑战。我们算法的关键思想是通过合并递归梯度校正技术来处理异质数据集,以增强FL(最初旨在用于通信效率)的本地更新方案。我们表明,在适当的参数设置下,所提出的净型算法实现了收敛的线性加速。我们进一步进行了广泛的数值实验,以评估所提出的净化算法的性能并验证我们的理论发现。
translated by 谷歌翻译